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Interaction between a vortex and a columnar defect in the London approximation
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We calculate the interaction between a vortex and an insulating cylindrical cavity in a type-ll superconductor
using the London approximation, thus extending the result in an earlier work by Mkrtchyan and $imidt
Eksp. Teor. Fiz61, 367 (1971 [Sov. Phys. JETB4, 195(1972]) to an arbitrarily large cavity radius. In the
limit of an infinitely large radius our result reduces to the well-known Bean-Livingston formula for the
interaction between a vortex and an insulating wall.

[. INTRODUCTION however, to generalize their result into the result presented
here, since the boundary conditions at the edge of the cavity
The interaction between a vortex and an insulating cylin-are completely different.

drical cavity in a type-Il superconductor was calculated in We consider a superconductor with an infinitely long cy-
1972 by Mkrtchyan and Shmitland was long regarded as a lindrical cavity, i.e., a columnar defect, of radibs The in-
somewhat academic exercise in the phenomenology of th@uction is taken to be parallel with the column, which is
vortex state. Their result has gained importance in recerfiirected along the axis. We thus have a two-dimensional
years in connection with the extensive study of highsu-  problem and only have to solve the London equation for the
perconductors containing artificially manufactured columnaz componentB(x,y) of the induction. We measure all
defects due to irradiation with heavy iofsee, for example lengths in units of the London penetration deptland mea-
Ref. 2 for a recent review Modeling an amorphous track sure the induction in units of2H .= ®,/27\ £, whereH,, is
left by a heavy ion as an insulating cylindrical cavity, the the thermodynamic critical fieldp, is the flux quantum, and
Mkrtchyan-Shmidt maximal pinning force gives a reasonable is the superconducting coherence length. The London
estimate for a low-field—temperature columnar defect criticakquation for the magnetic induction from a vortex is then
current. Making use of the full interaction between a vortexgiven by
and a cavity one derives a temperature dependence of the
critical current*which agrees excellently with experiments.
The work by Mkrtchyan and Shmidt, which henceforth will
be referred to as Ref. 1, has thus become the basic reference
to researchers working in the field of high-temperature suwherex=N\/¢ is the Ginzburg parameter amg is the posi-

B—AB=277T5(2)(r—ro), (1)

perconductivity(HTS). tion of the vortex. The boundary condition for the cavity is
Interestingly, Ref. 1, which was completed long before
the discovery of HTS, seems to be designed specifically for a Js-n=0, 2

heavy ion tracks as it only considers a cylinder of radius | ) . )

<\, where is the London penetration depth. Recent devel--€-+ thé supercurrent is tangential to the boundary. Since the
opments in artificially engineered pinning structutese, for current is given _by the curl of the magnetic |nduct|on_, it
example Ref. braise the question of the interaction betweenfollows thatB(r) is constant on the boundary of the cavity.

a vortex and a large cavity, with the radihsomparable to _From the fact thaB is a harmomc functlon inside the cgwty,

or even exceediny. The results of Ref. 1 could have been It then follows that the induction is constarii(r) =B, in-
easily extended to arbitratyif not for an unfortunate over- Side the entire cavity.

sight in the calculations, which invalidates the result at large

values ofb. One can easily see, in particular, that taking the Il. SOLVING THE LONDON EQUATION

limit of an infinitely large cavity in Ref. 1 does not reproduce
the Bean-Livingston barrier for a vortex interacting with a . . .

flat interface. Motivated by the quest for a general resultcoo.rdmate system gnd use pglar coordinateg). It is con-
valid in the whole range of parameters we present more geﬁ’—enlent to split the induction in two parts
eral and somewhat more transparent derivation for the inter-
action of a vortex with a cylindrical cavity. We also demon- B(r,¢)=Ba(r)+Ba(r, ), &)

strate that the result of Ref. 1 for small cavities can VeryyhereR, is the radially symmetric field due to the columnar
easily and instructively be obtained using the method of iMyefect ands, is the contribution from the vortex. The field

age vorti_ces similqr to Rgf. 6, as has_already been pointed ougl satisfies the homogeneous London equation
by Buzdin and Feinber§® A very similar problem has been

discussed by Wegt al., who considered the interaction be-
tween a vortex and a cylindricauperconductingcolumn +>—-B,=0, (4)
with a different penetration deptiThere is no a simple way, grz 1 oor

We take the center of the column to be the origin of our
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with the boundary conditioB,(b) =B,. The solution is eas- A comparison of Eqs(10) and(12) shows that we can write
ily found to be

1
Ko(r) Ba(r)= —Ko(|r=ro) +B5(r, ¢), (14)
Bl(r):Bom, r=b. 5
0 where B5, which represents the modification of the vortex
The field B, is the solution to the inhomogeneous equation field due to the column, is given by

B, 1B, 1 ¢°B, 2@ c . e
-4 = —B,=— — - BS(r,)=BS(r,¢;ro)= 2>, Bi(r)e'"?, 15
T g B g A AT, 5(r,¢)=B3(r,diro)= 2 BY(r) (15
®)  where
with the boundary conditiom,(b,¢)=0. This equation is 11 (D)K. (o)
solved using separation of variables BCipy—_ - .n nt’'o
B,(r, )=, By(r)e?, (7)  The advantage of writing the fiell,(r) in the form of Eq.
n (14) is that the divergence at=r is taken care of explicitly
and the solution has the form and that the ternB5(r, ¢;ro) is well defined for allr >b. It
~ follows directly from Eg. (16), or from the fact that
Bh(r)y=aul(r)+ByK,(r), b=r=ryg, (8a) B,(b,0)=0, that forry=(b,0) we have
~ B 1
Bn(r)=yaKn(r), rosr. (8b) BS(r, ib) =~ —Ko[|r = (b.,0)[]. (17)

In order to find the constants,, B,, andy, we use the fact

thatB,,(b) =0, B,,(r) should be continuous at=r, and the This property will be useful when computing the energy.
In order to find the induction inside the cavity we use the

discontinuity in the derivate d,(r) due to thes function is fact that the order parameter has to be single valued. This

given by leads to the usual condition for flux quantizatisee, e.g.,
dTBn d~Bn ) 1 . Ref. 10,
dr o+ dr rof Kro © VXB=k"1VH—A, (18
Solving for the constants, we find the solution where 6 is the phase of the order parameter ahds the
vector potential. Integrating this along the perimeter of the
~ 1 I,(b)K () cavity we obtain
Bn(r)=—=Ku(ro){ In(r)— —7—=5—1, bsrs=ry,
K Kn(b) 27Tq
(109 bf dg{)(VxB),f,:T—rrszo, (19
En(r)ZEKn(r)[h(ro)—M], o=T. where g is the number of flux quanta in the cavity. The
K Kn(b) (108 integral over¢ can easily be computed using
B
In order to better understand the solution for the fidld (VXB)yg=— o (20

and to obtain a form which can be implemented numerically,

we compare it to the solution for a vortex af without the  and the fact that only the terms with=0 survive. From this
cavity. We call this solutioB¥(r,¢) and find we obtain

1 2 0

which is identical to Eq(8) in Ref. 1.

with

- 1
Bn(r)= ;Kn(ro)ln(r), O=r=ry, (129 lIl. COMPUTING THE INTERACTION ENERGY

The next task is to compute the energy of the system,

~0 1 which in the London approximation is given b
BA(1)=—1a(ro)Kn(r), ro=r. (120 PP Jven By

On the other hand, we know that the field from the vortex at F= J d’r{B*+(VxB)?}, (22
ro is given by
where the energy is measured in unitsB@f\Z/41-r, lengths in
BY(r)= EKo(|f—ro|)- (13 units ofx, and the induction in units 0f2B. Here, and in
K the following, we always refer to the energy per unit length
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of the vortex. The integra(22) can be evaluated directly
over the area inside the cavity and yields

Feavity=Th?Bj. (23
In order to evaluate the integral for the outside region, w
rewrite it according to

f=f d’r B-{B+VXx(VXB)}+ fﬁds-Bx(VxB).
(24

The contribution from the volume integral in E(R4) fol-
lows directly from the London equation, and we find

2
J d’r B-{B+VX(VXB)}= ——B(ro.0). (25)

The surface integral can be rewritten as

b o

5£ dS-BX(VXB)=~5 —

| ao87r0). 20

Performing first the integration ovet we find

fd¢82<r,¢>:2w{[Bl<r>+Eo<r)]2+n§O'én<r>2].

(27
Using the fact that
5 B Ke(ro)
Bh(b)=0, ar r:b_KbKO(b)' (28
we arrive at

2’7TBO
(29

Adding all the pieces together we obtain the final result

27TBO
kKo(b)

2
[kbBoK1(b) =Kq(ro) ]+ TB(fo,O)-
(30

F=mb?Bi+

The latter formula can be simplified further by inserting the

expressions foBy andB(r). After some straightforward al-
gebra we arrive at

. 2w [Ko(ro) +aKo(b)]?
Kk?bKo(b)  Ky(b)+3bKy(b)

2 Ly, 2T
+ _2 Ko(K )+ —BZ(I’O,O;I‘O), (31)
K K

where we have cut off the divergence Bj(r,,0) at a dis-
tancex 1. The first term in this expression differs signifi-
cantly from the result given in Eq(10) in Ref. 1 if the
conditionb<1 is not fulfilled. Taking the limit of largeb,
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BOZ F= ’ﬂ'szgy (32)

kb2’
as should be expected. It is easy to derive the result for a
gavity containingq flux quanta, without an external vortex.

In this case we obviously find a rotationally symmetric solu-
tion with the induction given by

Ko(r) 1

qKo(b)

B(r)=Byg———, =——— (33
(N=Boic by Bo™ip K,(b)+1bK(b)
and the energy
2mq? Ko(b
_ Zq o(b) (34)
k’b Ky(b)+3bKy(b)
It follows from Eq.(31) and from the observation
c 1 -1
5(b.0ib) = — —Ko(x 1), (35

that the energy for a vortex at a positiosry and a cavity
containingg flux quanta smoothly changes into the result for
a cavity withq+1 flux quanta as the vortex enters the cav-
ity, i.e., ro—b.

The potential for a vortex interacting with a column con-
taining g flux quanta is obtained directly from E31) by
dropping all terms which do not involve,. We find

21
k’bKy(b)

Ko(r)2+2qKo(b)Ko(r)
K1(b)+3bKo(b)

In(b)
Kn(b)

Uyc(r)=

2

K2

>

n

K2(r) r>b, (36)
wherer is the distance from the vortex to the center of the
column. The interaction potenti&B6) is our main result and
gives the interaction of a vortex with an insulating column of
radiusb containingq flux quanta, where both andq can be
arbitrarily large. The potentid)(R) is plotted in Fig. 1 for

a number of different values df. It vanishes exponentially

fast at large distances, i.e., foc1.

IV. SOLUTION USING IMAGE VORTICES

If b,ro<<1, the problem can be solved easily using image
vortices, transcribing a problem from the textbook by Lan-
dau and Lifshit8 for a charged line in an infinite dielectric
near a cylindrical cavity with different dielectric constant, as
has first been pointed out by Buzdin and Feinbetgssum-
ing the magnetic induction from a vortex to decay logarith-
mically, we can satisfy the boundary conditions for the cav-
ity by placing q+1 positive vortices in the center and a
negative vortex at the distante b?/r, from the center. The
magnetic induction is then given by

1
= L@+Din(r])+In(|r=ro})=In([r 1)1,
(37

B(r)

with g=b?, one sees that the induction and the energy takevherel=(b?/r,,0). The energy of the system can then be

the form

computed by integration as above and becomes particularly
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London equation exactly using image vortices and we find
0.0 the induction
B He *+ ! K d)“+
X,y)= — X—
05 (x,y)=He "+ —{Ko(V(x=d)Z+y?)
. ii —Ko(\(x+d)?+y?)}, (40
f : for x>0. The energy can again be calculated using partial
Ny ;’ integration. The bulk term gives the contribution
<) ,‘
+ -15 ; 2 2w o, 2w 1 ™
o | Fouk=—0B(d,00=—He +—2K0(K )——2K0(2d),
= ' K K K K
: (41)
204 | | |
where we again have cut off the divergence at a distance
« L. The surface term is simply an integral along thaxis
: and we find
25 :
= v T v T v 1 %dS-BX(VXB):—J\dyBﬂXB
0.0 0.5 d 1.0 15
[~2 2
FIG. 1. The vortex-column potential for a number of different — 2Hd dyKl( d*+y%)
values ofb: b=0.1 (solid lineg, b=0.2 (dashed lines and b K \/dz-f—y2
=0.5 (dotted line$. The upper curve corresponds to the exact so- ok
an
= e d (42)
K

lution U,c(r) and the lower curve to the potentidi (r) obtained
using the method of image vortices in all three cases.

simple in the case ofj=0, since the surface integral van- The integral was computed using the substitutign
=d sinhk) and Eq.(6.6648 in Ref. 11. Adding all the parts

ishes. We then find the energy
we find energy
27 b?
F= — In| 1— - —|n(K_l) . (38) 4 21 2
K ro Fer=—He ‘+ —Ko(k = —Kg(2d). (43
K K K

Dropping irrelevant terms, we arrive at the well-known

The interaction is again given by ting dependent part of Eq.
Bean-Livingston barrier,

(38) and we finally obtaif

T b?
=Ml 1= 2. 4 2
Uyy(r) Kzln<1 rZ) (39) Usu(d) =~ He 4= “ZKy(2d), (44)
K

The interaction potential39) is also shown in Fig. 1 and . . . .

compares favorably with the exact result fo=0.2. In the Wh.'Ch we have normalized so that It vanishes for lache

case of larger columns, the image vortex solution produces '5h|s We"'k”OW’F result can be found in many textbooks on
superconductivity(see, e.g., Ref. 12

too long-ranged interaction. Note in particular that the
U,y (r) approaches zero as/f)?, whereas the exact poten-

tial Uy(r) decays exponentially for large distances. VI. INFINITELY LARGE COLUMN RADIUS

We now turn to the case of an infinitely large cavity and
V. BEAN-LIVINGSTON BARRIER show that this reproduces the Bean-Livingston result above.

The main problem with the result in Ref. 1 is that it fails :/r\]/:rg:rr: r:get(;aa\l/ ?ara J'gﬁfné,r]e?uoit'f?unx mu;tgtaaggvglr?;l:r_we
to describe the limit of a large column. Sending the column ge 4 :

: Co . : . more, we want the distance of the vortex from the edge of
radius to infinity, one expects to obtain the interaction be-the cavity to be finite and write.=b + d. Inserting this into
tween a vortex and a flat insulating wall, i.e., the Bean- y ; o 0~ ' ing

Eq. (36) and discarding irrelevant terms we find

Livingston barrier. We show below that this is indeed the
case for the interaction in E¢36). For the sake of complete-
8mq Ko(b+d) 27
+—B3(b+d,0). (45

ness, however, we first derive the Bean-Livingston barrier Uye(b+d)~ —=
using methods similar to those above. Consider an interface ve «2b2  Ko(b)
to an insulator, which we take to coincide with thexis and

Using the fact that we havB,~2q/«b?, we can write this

a vortex at a distancd from the wall at positiorr =(d,0).
The symmetry of the problem makes it possible to solve thas
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FIG. 2. Comparison of the Bean-Livingston barrieplid line)
with the vortex-column interaction for large columnsb (
=5,10,20). We always have=b? flux quanta in the columiin
dimensionless quantitigsproducing a magnetic induction d@
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We did not find a simple proof of E¢48), but the result can
be understood in the following manner: We begin by observ-
ing that

Ko(2d)= 2, 1,(b)Ky(b+2d) (49)
for any b. It then follows that
Ko(2d)+ «kB5(b+d,0)
B K,(b+d)?
_; I,(b)K,(b+2d)] 1— Kn(b)Kn(b+2d)}'
(50)

Inserting the lowest order asymptotic expansion we find

(5

T K, (D)K. (b+2d) 2\b

K,(b+d)? 1(d)2
which shows that the right-hand side of E§0) vanishes in
the limit b— o, a result which we have also verified numeri-
cally. In Fig. 2 we plot the Bean-Livingston barri¢43)
compared to the column-vortex interacti(@®) for a number
of different column sizes. The convergence is fairly slow, but
already the column of the size=5 shows the typical Bean-

~qd,/wb? in the limit of large columns. The convergence to the Livingston shape.
BL result is slow, but already the smallest column shows the correct

characteristic shape.

4w Ko(b+d) 27
UVC(b+d)~TBOW+TBZ(b_'—d’O)'
(46)

For the first term we have the approximation

Be“’\liwdf—WBe‘d
0 b+d  « %
(47)

in agreement with Eq44). It thus remains to show that

4w Ko(b+d) 4
k% Kob) k.

lim kB5(b+d,0)= —Ko(2d).

b

(48)

VIl. CONCLUSION

We have derived the interaction between a vortex and an
arbitrarily large cylindrical cavity in a type-1l superconductor
using the London approximation. In the limit of an infinitely
large cavity, the interaction reduces to the well-known Bean-
Livingston result. Our work extends an earlier work on the
same subject.
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